153 research outputs found

    Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data

    Get PDF
    A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS).Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (similar to 500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data.The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O-3 and H2O-O-3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O-3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition.The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model

    Recent results from the Arctic Radiation and Turbulence Interaction STudy (ARTIST) project

    Get PDF
    Ground-based measurements were conducted at Ny-˚Alesund in the Svalbard Islands in the framework of the research project ARTIST (Arctic Radiation and Turbulence Interaction STudy) funded by the European Communities. Key objectivesof the campaign were: 1) provide all participantswith ground reference data as input to models describing the development of the atmospheric boundary level, 2) compute the surface roughness length in order to characterise the surface of the site, 3) parameterise the surface energy exchanges, calculating the surface radiation flux, the sensible and latent heat fluxes, and 4) obtain the surface energy balance during both clear and cloudy sky conditions. The cloud radiative forcing has been also estimated. Final results of the analysis of the data set are presented

    Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data

    Get PDF
    A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). <br><br> Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (~500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data. <br><br> The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O<sub>3</sub> and H<sub>2</sub>O-O<sub>3</sub> scatter plots and of the Probability Distribution Function (PDF) of the H<sub>2</sub>O-O<sub>3</sub> pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition. <br><br> The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model

    Morphology of the tropopause layer and lower stratosphere above a tropical cyclone : a case study on cyclone Davina (1999)

    Get PDF
    During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame. Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics

    A multi-input UV-VIS airborne GASCOD/A4r spectroradiometer for the validation of satellite remote sensing measurements

    Get PDF
    The present paper describes a UV-VIS spectroradiometer named GASCOD/A4r developed at ISAC-CNR for remote sensing measurements aboard stratospheric M55-Geophysica aircraft, flying up to 21 km. Obtained experimental data are used for retrieving of NO2, O3 and of other minor gases atmospheric content, applying the DOAS (Differential Optical Absorption Spectroscopy) method. UV actinic flux and J(NO2) are also derived. All these parameters are used for satellite data validation tasks. The specific results obtained during dedicated aircraft missions in different geographical areas have already been utilized for ENVISAT validation

    Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling

    Get PDF
    We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO<sub>2</sub> during August 2006 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely to have originated from convective cloud east of the flights. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that convection can influence the composition of the upper troposphere above the level of main outflow for an event of deep convection close to the observation site. Model analysis also shows that deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition

    Ship-board report on atmospheric CO2 concentrations recorded on continuous from Mediterranean sea to Antarctica

    Get PDF
    We present the results obtained from continuous measurements performed during two cruises with hemispherical courses. In this way, we obtained the latitudinal trend of CO2 in continuity of space and time along two hemispheric courses in 1994-95 and 1996-97 from Europe to Antarctica. The results are compared with measurements from the National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostic Laboratory (CMDL) cooperative air sampling network. The fitting of data recorded on board with the historical data sets recorded at Palmer Station is also presented, highlighting the current annual increase in atmospheric CO2 concentrations

    Perspectives of 2D and 3D mapping of atmospheric pollutants over urban areas by means of airborne DOAS spectrometers

    Get PDF
    tants, offering numerous advantages over conventional networks of in situ analysers. We propose some innovative solutions in the field of DOAS (Differential Optical Absorption Spectroscopy) remote systems, utilizing diffuse solar light as the radiation source. We examine the numerous potentialities of minor gas slant column calculations, applying the «off-axis» methodology for collecting the diffuse solar radiation. One of these particular approaches, using measurements along horizontal paths, has already been tested with the spectrometer installed on board the Geophysica aircraft during stratospheric flights up to altitudes of 20 km. The theoretical basis of these new measurement techniques using DOAS remote sensing systems are delineated to assess whether low altitude flights can provide 2D and 3D pollution tomography over metropolitan areas. The 2D or 3D trace gas total column mapping could be used to investigate: i) transport and dispersion phenomena of air pollution, ii) photochemical process rates, iii) gas plume tomography, iv) minor gas vertical profiles into the Planetary Boundary Layer and v) minor gas flux divergence over a large area

    Vertical profile of peroxyacetyl nitrate (PAN) from MIPAS-STR measurements over Brazil in February 2005 and its contribution to tropical UT NOy partitioning

    Get PDF
    We report on the retrieval of PAN (CH<sub>3</sub>C(O)OONO<sub>2</sub>) in the upper tropical troposphere from limb measurements by the remote-sensor MIPAS-STR on board the Russian high altitude research aircraft M55-Geophysica. The measurements were performed close to Araçatuba, Brazil, on 17 February 2005. The retrieval was made in the spectral range 775–820 cm<sup>&minus;1</sup> where PAN exhibits its strongest feature but also more than 10 species interfere. Especially trace gases such as CH<sub>3</sub>CCl<sub>3</sub>, CFC-113, CFC-11, and CFC-22, emitting also in spectrally broad not-resolved branches, make the processing of PAN prone to errors. Therefore, the selection of appropriate spectral windows, the separate retrieval of several interfering species and the careful handling of the water vapour profile are part of the study presented. <br><br> The retrieved profile of PAN has a maximum of about 0.14 ppbv at 10 km altitude, slightly larger than the lowest reported values (&lt;0.1 ppbv) and much lower than the highest reported in the literature (0.65 ppbv). Besides the NO<sub>y</sub> constituents measured by MIPAS-STR (HNO<sub>3</sub>, ClONO<sub>2</sub>, HO<sub>2</sub>NO<sub>2</sub>, PAN), the in situ instruments aboard the Geophysica provide simultaneous measurements of NO, NO<sub>2</sub>, and the sum NO<sub>y</sub>. Comparing the sum of in-situ and remotely derived NO+NO<sub>2</sub>+HNO<sub>3</sub>+ClONO<sub>2</sub>+HO<sub>2</sub>NO<sub>2</sub>+PAN with total NO<sub>y</sub> a deficit of 30–40% (0.2–0.3 ppbv) in the troposphere remains unexplained whereas the values fit well in the stratosphere
    corecore